FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

H. JI, A. BHATTACHARJEE, S. PRAGER (Princeton), S. BALE (UC-Berkeley), T. CARTER, N. CROCKER (UCLA), J. BRAKE (Maryland), J. EGEDAL, J. SARFF, J. WALLACE (Wisconsin), E. BELOVA. R. ELLIS, W. FOX, P. HEITZENROEDER, M. KALISH, J. JARA-ALMONTE, C. MYERS, W. QUE, Y. REN, P. TITUS, M. YAMADA, J. YOO (PPPL), W. DAUGHTON (LANL)

Abstract

A new intermediate-scale plasma experiment, called the <u>Facility for Laboratory Reconnection Experiments or FLARE, is under</u> construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to space, solar, astrophysical, and fusion plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural and fusion plasmas. The design of the FLARE device is motivated to provide experimental access to the new regimes involving multiple X-lines at large effective sizes and high Lundquist numbers. The motivating major physics questions, the construction status, and the planned collaborative research will be discussed. What Is Magnetic Reconnection? Two Key Features: **Topological rearrangement** of magnetic field lines **Dissipation of magnetic** energy to plasma energy Field lines break Before After and reconnect Where Does It Occur and Why Is It Important? Laboratory fusion plasmas: Solar plasma: Confinement degradation Flares and corona heating lares from Astrophysical plasmas Magnetospheric plasma: Particle energization Cause of aurora & substorms **Outstanding Questions & Lab Experiments** • How is reconnection rate determined? (*The rate problem*) • How does reconnection take place in 3D? (*The 3D problem*)

- How does reconnection start? (*The onset problem*)
- How does partial ionization affect reconnection? (*The partial ionization problem*)
- How do boundary conditions affect reconnection process? (*The boundary problem*)
- How are particles energized? (*The energy problem*)
- How to apply local reconnection physics to a large system? (*The multi-scale problem*)

Device	Where	Since	Who	Geometry	Focus
3D-CS	Russia	1970	Syrovatskii, Frank	Linear	3D, energy
LPD, LAPD	UCLA	1980	Stenzel, Gekelman	Linear	Energy, 3D
TS-3/4	Tokyo	1990	Katsurai, Ono	Merging	Rate, energy
MRX	Princeton	1995	Yamada, Ji	Toroidal, merging	Rate, 3D, energy, partial ionization, boundary, onset
SSX	Swarthmore	1996	Brown	Merging	Energy, 3D
VTF	MIT	1998	Fasoli, Egedal	Toroidal	Onset, 3D
Caltech exp	Caltech	1998	Bellan	Planar	Onset, 3D
RSX	Los Alamos	2002	Intrator	Linear	Boundary, 3D
RWX	Wisconsin	2002	Forest	Linear	Boundary
Lasers plasmas	UK, China, Rochester	2006	Nilson, Li, Zhong, Dong, Fox, Fiksel, Gao, Ji	Planar	Flow-driven
VINETA II	Max-Planck	2012	Grulke, Klinger	Linear	3D
TREX	Wisconsin	2013	Egedal, Forest	Toroidal	Energy
FLARE	Princeton	2013	Ji +	Toroidal	All

m	Term in drift kinetic Equation	2D PIC (B _g =0.2B _{rec})	2D PIC (B _g =1.0B _{rec})
ctric field	$q v_{\scriptscriptstyle \parallel} E_{\scriptscriptstyle \parallel}$	small	dominate
drift: Slingshot term eleration) increases energy	$q ec{v}_c ullet ec{E}$	dominate	dominate
ft: Betatron n increases/ perpendicular energy	$q\vec{v}_{\scriptscriptstyle B}\bullet\vec{E}$	Energy sink	small
noment	$\frac{\mu}{\partial B}$	Energy sink	small